Indian Statistical Institute, Bangalore

M. Math.

Second Year, Second Semester
Advanced Functional Analysis

Final Examination
Maximum marks: 100

Date: May 19, 2021
Time: 3 hours
Instructor: B V Rajarama Bhat

Notation: In the following \mathcal{H} is a complex separable Hilbert space and $B(\mathcal{H})$ denotes the algebra of all bounded operators on \mathcal{H}.
(1) Suppose A, B are bounded operators on \mathcal{H} and $\left\{A_{n}\right\}_{n \in \mathbb{N}},\left\{B_{n}\right\}_{n \in \mathbb{N}}$ are two sequences of bounded operators on \mathcal{H}. (i) Show that if $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ converge in SOT to A, B respectively, then $\left\{A_{n} B_{n}\right\}_{n \in \mathbb{N}}$ converges to $A B$ in SOT. (ii) Give an example where $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ converge in WOT to A, B respectively, but $\left\{A_{n} B_{n}\right\}_{n \in \mathbb{N}}$ does not converge to $A B$ in WOT.

(2) Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis for \mathcal{H}. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be the unilateral shift defined by $V e_{n}=e_{n+1}, n \in \mathbb{N}$, and extended linearly and continuously. Take $R=2 I+V+V^{*}$. (i) Show that R is a positive operator. (ii) Let E be the spectral measure of R. Compute first three moments of the probability measure $E_{e_{1}, e_{1}}$. [15]
(3) Fix a natural number n. Let $M=\left\{\left(A_{1}, A_{2}, \ldots, A_{n}\right): A_{j} \in B(\mathcal{H}), 0 \leq A_{j} \leq I, \forall j\right\}$, considered as a convex subset of the vector space $B(\mathcal{H})^{n}=\left\{\left(X_{1}, X_{2}, \ldots X_{n}\right): X_{j} \in\right.$ $B(\mathcal{H})\}$. (i) Show that if $P_{1}, P_{2}, \ldots, P_{n}$ are projections such that $P_{1}+P_{2}+\cdots+P_{n}=I$, then they are mutually orthogonal and $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ is an extreme point of M. (ii) If $n=2$, then show that the converse is also true, namely that if $\left(R_{1}, R_{2}\right)$ are extreme points of M, then R_{1}, R_{2} are projections satisfying $R_{1}+R_{2}=I$. [15]
(4) Let $N=U P$ be the polar decomposition of a bounded operator N on \mathcal{H}. Show that N is normal if and only if U and P commute.

(5) Let B be a bounded normal operator on \mathcal{H}. Show that there exists a bounded normal operator A such that $B=A^{2}$.

(6) Let E, F are projections in a von Neumann algebra \mathcal{A}. Show that (i) $(E \vee F-F) \sim$ $E-E \wedge F$; (ii) $\left(E-E \wedge F^{\perp}\right) \sim\left(F-E^{\perp} \wedge F\right)$.

(7) Consider group von Neumann algebras $\mathcal{L}(\mathbb{Z})$ and $\mathcal{R}(\mathbb{Z})$ for the group of integers \mathbb{Z}. (i) Show that $\mathcal{L}(\mathbb{Z})=\mathcal{R}(\mathbb{Z})$ and is an abelian von Neumann algebra. (ii) Let τ be the associated tracial state on $\mathcal{L}(\mathbb{Z})$ coming from unit vector δ_{0}. Show that for any $0 \leq s \leq 1$, there exists a projection E in $\mathcal{L}(\mathbb{Z})$ such that

$$
\tau(E)=s
$$

(Hint: Use the Hilbert space isomorphism between $l^{2}(\mathbb{Z})$ and $L^{2}(\mathbb{T})$, where \mathbb{T} is the circle $\left\{e^{2 \pi i t}, 0 \leq t \leq 1\right\}$ given by the standard basis vectors e_{n} mapping to functions

$$
\begin{equation*}
f_{n}(t)=e^{2 \pi i t}, 0 \leq t \leq 1 \tag{15}
\end{equation*}
$$

for $n \in \mathbb{Z}$.)

