Indian Statistical Institute, Bangalore

M. Math.

Second Year, Second Semester Advanced Functional Analysis

Final Examination Maximum marks: 100 Date : May 19, 2021 Time: 3 hours Instructor: B V Rajarama Bhat

Notation: In the following \mathcal{H} is a complex separable Hilbert space and $B(\mathcal{H})$ denotes the algebra of all bounded operators on \mathcal{H} .

- (1) Suppose A, B are bounded operators on \mathcal{H} and $\{A_n\}_{n\in\mathbb{N}}, \{B_n\}_{n\in\mathbb{N}}$ are two sequences of bounded operators on \mathcal{H} . (i) Show that if $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ converge in SOT to A, B respectively, then $\{A_nB_n\}_{n\in\mathbb{N}}$ converges to AB in SOT. (ii) Give an example where $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ converge in WOT to A, B respectively, but $\{A_nB_n\}_{n\in\mathbb{N}}$ does not converge to AB in WOT. [15]
- (2) Let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis for \mathcal{H} . Let $V : \mathcal{H} \to \mathcal{H}$ be the unilateral shift defined by $Ve_n = e_{n+1}, n \in \mathbb{N}$, and extended linearly and continuously. Take $R = 2I + V + V^*$. (i) Show that R is a positive operator. (ii) Let E be the spectral measure of R. Compute first three moments of the probability measure E_{e_1,e_1} . [15]
- (3) Fix a natural number n. Let M = {(A₁, A₂,..., A_n) : A_j ∈ B(H), 0 ≤ A_j ≤ I, ∀j}, considered as a convex subset of the vector space B(H)ⁿ = {(X₁, X₂,..., X_n) : X_j ∈ B(H)}. (i) Show that if P₁, P₂,..., P_n are projections such that P₁+P₂+...+P_n = I, then they are mutually orthogonal and (P₁, P₂,..., P_n) is an extreme point of M. (ii) If n = 2, then show that the converse is also true, namely that if (R₁, R₂) are extreme points of M, then R₁, R₂ are projections satisfying R₁ + R₂ = I. [15]
- (4) Let N = UP be the polar decomposition of a bounded operator N on \mathcal{H} . Show that N is normal if and only if U and P commute. [15]
- (5) Let B be a bounded normal operator on \mathcal{H} . Show that there exists a bounded normal operator A such that $B = A^2$. [15]
- (6) Let E, F are projections in a von Neumann algebra \mathcal{A} . Show that (i) $(E \vee F F) \sim E E \wedge F$; (ii) $(E E \wedge F^{\perp}) \sim (F E^{\perp} \wedge F)$. [15]
- (7) Consider group von Neumann algebras $\mathcal{L}(\mathbb{Z})$ and $\mathcal{R}(\mathbb{Z})$ for the group of integers \mathbb{Z} . (i) Show that $\mathcal{L}(\mathbb{Z}) = \mathcal{R}(\mathbb{Z})$ and is an abelian von Neumann algebra. (ii) Let τ be the associated tracial state on $\mathcal{L}(\mathbb{Z})$ coming from unit vector δ_0 . Show that for any $0 \leq s \leq 1$, there exists a projection E in $\mathcal{L}(\mathbb{Z})$ such that

$$\tau(E) = s.$$

(Hint: Use the Hilbert space isomorphism between $l^2(\mathbb{Z})$ and $L^2(\mathbb{T})$, where \mathbb{T} is the circle $\{e^{2\pi i t}, 0 \leq t \leq 1\}$ given by the standard basis vectors e_n mapping to functions

$$f_n(t) = e^{2\pi i t}, \ 0 \le t \le 1$$

for $n \in \mathbb{Z}$.)